
Accelerating a Hypersonic CO2
Reaction Solver

Undergraduate Thesis

submitted in Partial fulfillment of the requirements for the degree of

Bachelors of Technology

in the

Department of Mechanical Engineering

By

G. Vinay Ram
ID No. AP17110030007

&
D. Dinesh Sai

ID No. AP17110030009

Under the supervision of:

Dr. Satya Pramod Jammy

SRM University-AP

May, 2021

Certificate
This B.Tech report entitled “ Accelerating a Hypersonic CO2 Reaction Solver” by G. Vinay
Ram (AP17110030007) and D. Dinesh Sai (AP17110030009) is prepared and submitted
as partial fulfillment of the requirements for the degree of Bachelors of Technology in
Department of Mechanical Engineering.

Supervisor

Dr. Satya Pramod Jammy

Associate Professor
Department of Mechanical Engineering

SRM University-AP

Head of Department (HOD)

Dr. Prakash Jadhav

Associate Professor
Department of Mechanical Engineering

SRM University-AP

Examiner

Date: 24 - 05 - 2021
Place: SRM University-AP

iii

“If human life were long enough to find the ultimate theory, everything would have been
solved by previous generations. Nothing would be left to be discovered.”

Stephen Hawking

Abstract

Atmospheric entry is one of the greatest challenges faced during interplanetary missions.
Aerodynamic heating, equilibrium or non-equilibrium gas chemistry and strong shocks are
some of the major obstacles encountered by the spacecraft at hypersonic speeds during
re-entry into the atmosphere. The spacecraft should be designed efficiently to endure these
repercussions. Computational fluid dynamics has emerged as a useful tool for achieving
this goal. A 2-D unstructured finite volume method based solver capable of simulating
hypersonic flows in CO2 rich Martian atmosphere with chemical kinetics for eight species
consisting of N2, O2, NO,O,N,CO2, CO and C incorporated in it is developed. It solves
2-D Navier-Stokes equations along with the species continuity equations. The solver uses
AUSM delta schemes for evaluating convective flux terms and node gradients for calculat-
ing viscous flux terms. A simple first order explicit Euler scheme is utilized for temporal
discretization. The solver is parallelized to run on single or multiple CPUs and GPUs in
order to attain greater computational speeds using OP2 application programming interface.
The kernel files and parallel loops for OP2 API are generated using semi-automatic code
generation technique which uses symbolic Python package SymPy. The OP2 generates
kernels and executable parallel loops for high level scripts which can be implemented
using multiple computational architectures like OpenMP, MPI, OpenCL, CUDA, etc,.
The developed solver is validated for canonical ramp in a channel test case with published
data and assessed the speedup of the solver using different architectures. The solver has
a speedup of 13x using OpenMP compared to the sequential solver for the considered
inviscid test cases.

Keywords: Mars solver, FVM, GPU, auto parallel.

Acknowledgements

First and foremost, praises and thanks to our parents for their immense love and blessings
throughout our project.

We are tremendously grateful for our mentor Dr. Satya Pramod Jammy for his constant
support and encouragement throughout the project. His dynamism, sincerity, vision and
motivation have deeply inspired us. We will forever be indebted to him for this opportunity.

We feel short of words to express our heartfelt thanks to all the Professors of Mechanical
Department, SRM University-AP and to all those who have directly or indirectly helped
us during our journey. This would have been an impossible task without the support from
our families and friends.

vii

Contents

Declaration of Authorship ii

Certificate iii

Abstract vi

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xii

Abbreviations xiv

Nomenclature xv

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Overview . 3

2 Background and Literature review 4
2.1 High temperature effects . 4
2.2 Shock wave boundary layer interaction (SWBLI) 7
2.3 Parallel Computation . 9

2.3.1 OP2 . 9
2.4 Problem statements and Objectives . 10

2.4.1 Objectives . 10

3 Numerical Methodology 11
3.1 Governing Equations . 11

ix

3.2 Chemical Kinetics . 14
3.3 Finite Volume Method . 15

3.3.1 Mathematical formulation of cell centered FVM 16
3.4 Spatial Discretization . 20

3.4.1 Discretization of Convective Fluxes 20
3.4.1.1 AUSM . 20
3.4.1.2 AUSM delta . 23

3.4.2 Discretization of Viscous Fluxes . 24
3.4.2.1 Calculation of Viscous flux 24

3.5 Boundary Conditions . 26
3.5.1 Inflow and Outflow boundary conditions 26
3.5.2 Inviscid Wall boundary condition 27

3.5.2.1 Mirror or Ghost cell approach 27
3.5.2.2 Viscous Wall . 28

3.6 Temporal discretization . 29
3.6.1 Euler time stepping . 29

4 Semi Automatic Code Generation 30
4.1 OP2 . 30
4.2 Semi Automatic Code Generation Using SymPy 34

5 Validation of in-house solver 37
5.1 Ramp in a channel . 37

5.1.1 Boundary Conditions . 37
5.1.2 Inviscid test case . 38
5.1.3 Viscous test case . 40
5.1.4 Validation of in-house solver . 40

5.2 Run time Comparison . 41

6 Conclusions and Future work 43
6.1 Conclusions . 43
6.2 Future work . 44

Bibliography 45

List of Figures

1.1 Re-entry flow regions of the Apollo Command Module [12] 2

2.1 Ranges of various high temperature aspects of air (1 atm) 5
2.2 Typical configuration of a Scramjet intake and the associated flow features [14]. 8

3.1 Representation of cell centered FVM scheme . 16
3.2 Node value schematic diagram . 24
3.3 Cell gradient schematic diagram . 25
3.4 Mirror or Ghost cell approach [11] . 28

4.1 The mesh represented data layouts provided with OP2 32
4.2 Flow chart of Code Generation . 35
4.3 Flow chart of OP2 Framework . 36

5.1 Boundary conditions for (a) Inviscid test case (Ramp angle, θ = 20◦) and (b) Viscous
test case (Ramp angle, θ = 12.5◦) . 38

5.2 Pressure contours for Inviscid test case . 39
5.3 Pressure plots over a line along x-axis for different mach numbers 39
5.4 Pressure contours for viscous test case . 40

xi

List of Tables

3.1 Chemical reactions and specific reaction-rate constants for chemical non-equilibrium
calculations . 15

5.1 Number of cells and nodes for different test cases 38
5.2 Shock wave angle, pressure ratio and temperature ratio at different deflection angles

and Mach numbers . 41
5.3 Inviscid speedup comparison between different architectures (1000 iterations) 42
5.4 Viscous speedup comparison between different architectures and reference solver (1000

iterations) . 42

xii

Abbreviations

API - Application Programming Interface

AUSM - Advection Upstream Splitting Method

CFD - Computational fluid dynamics

CFL - Courant-Friedrichs-Lewy

CPU - Central Processing Unit

CUDA - Compute Unified Device Architecture

FDM - Finite Difference Method

FEM - Finite Element Method

FVM - Finite Volume Method

GPU - Graphics Processing Unit

MPI - Message Passing Interface

OP2 - Oxford Parallel library for Unstructured mesh solvers

OpenCL - Open Computing Language

OpenMP - Open Multi-Processing

SWBLI - Shock Wave Boundary Layer Interaction

xiv

Nomenclature

Ci - Mass concentration of species i (kg/m3)

Cp - Specific heat at constant pressure (J/kgK)

Cv - Specific heat at constant volume (J/kgK)

Cpi - Specific heat of species i at constant pressure (J/kmolK)

e - Internal energy (J/kg)

ei - Internal energy of species i (J/mol)

E - Total energy (J/kg)

Ev - Viscous flux vector in x direction

E1 - Convective flux vector in x direction

Fc - Convective Flux vector

Fv - Viscous flux vector in y direction

F1 - Convective flux vector in y direction

hi - Specific enthalpy of species i (J/kg)

h0
fi - Heat of formation of species i (J/mol)

k - Conductivity (W/(mK))

M - Mach number

MWi - Molecular weight of species i

N - Total number of species

p - Pressure (N/m2)

qx - Heat flux in x direction (W/m2)

xv

qy - Heat flux in y direction (W/m2)

Ru - Universal gas constant (J/kmolK)

SI - Inviscid axisymmetric source term

Si - Species production rate (kg/m3s)

S - Source term vector

Sv - Viscous axisymmetric source term

t - Time (s)

T - Temperature (K)

U - Conserved variable vector

u - Velocity in x direction (m/s)

v - Velocity in y direction (m/s)

X - X-coordinate (m)

Y - Y-coordinate (m)

Yi - Mass fraction of species i

α - Constant (α = 1 for 2-D axisymmetric, α = 0 for 2-D problem)

β - Shock Wave angle

ρ - Density (kg/m3)

µ - Viscosity (Ns/m2)

θ - Angle (degree)

τxx, τxy, τyy, τθθ - Shear stress components (N/m2)

Dedicated to our Parents . . .

xvii

Chapter 1

Introduction

1.1 Motivation

Ever since man conquered the lunar surface, it has been a distant dream to set foot on
Mars. There are dozens of compelling reasons for us to explore Mars, some of them
include the search for Martian existence, understanding the planet’s surface, and to colo-
nize human life, etc. Certain aspects can be undoubtedly noticed through observational
satellites which revolve around the planet, these observational satellites tremendously
help in analysing and accurately reporting the specific information found there and not
all key things can be recognized by them. For exploring things like the rock composition
or collecting samples of soil and performing experiments, etc., we have to land onto the
surface. This brings us to the concept of atmospheric entry.

Movement of any object from outer space entering into the atmosphere or through the
gases of the atmosphere is termed as atmospheric entry. During the atmospheric entry,
hypersonic vehicles are subjected to strong shocks, equilibrium or non-equilibrium gas
chemistry, large heat fluxes and as a consequence, significantly high temperatures are
reached on the structure [38] and vibrations are increased. To design the spacecraft we
would require a seamless understanding of the technical and fundamentals of multiple
fluid flow regimes like subsonic, transonic, supersonic, and hypersonic.

The fig. 1.1 is an example for formation of bow shock at hypersonic speed. There is a wake
region formed behind the re-entry vehicle which separates the flow and its interaction with

1

Chapter 1. Introduction 2

Figure 1.1: Re-entry flow regions of the Apollo Command Module [12]

free shear layer forms a trailing shock. As the re-entry vehicle enters into the atmosphere
at hypersonic speeds, we can observe elevated temperatures that are more than 800K [11].
As a consequence, the shock layer results in the occurrence of various physical phenomena
like vibrational relaxation, chemical reactions, ionization, radiation, etc. Aerodynamic
heating is one of the most significant problems encountered in hypersonic flights. Albeit a
variety of factors such as shock wave boundary layer interaction, excess drag force, heat
effects, etc. come into view.

Mars’s atmosphere is about 1% dense of Earth’s atmosphere. Martian atmosphere compo-
sition is: 95% by volume of carbon dioxide (CO2), 2.6% molecular nitrogen (N2), 1.9%
argon (Ar), 0.16% molecular oxygen (O2), and 0.06% carbon monoxide (CO) at the surface.
It is primarily composed of carbon dioxide (CO2) [40]; and due to the aerodynamic heating
the molecules of gas dissociate near the surface, as the result of this phenomena the gas
around the re-entry vehicle behave abnormally. So, while designing the spacecraft we
should consider all of these characteristics.

In order to simulate the flight conditions of re-entry vehicles we have to develop a solver
with the required chemical kinetics for Mars’s atmosphere. Developing a solver that
can run sequentially on the Central Processing Unit (CPU) takes enormous amount of

Chapter 1. Introduction 3

computational time. For example, to converge a 3D Navier-Stokes flow case using CPU
with more than millions of degrees of freedom takes thousands of computational hours.
To overcome this parallelization is the ideal approach. Solving the same example flow case
using high performance parallel computing [2] reduces the time.

In this work we developed a Parallelized Hypersonic CO2 based reaction solver using
OP2 [16] framework which can be run using single or multiple CPUs and GPUs. This is
used in solving the numerical problems for hypersonic re-entry vehicles in the Martian
atmosphere.

1.2 Thesis Overview

Chapter 2 discusses the literature review on the high temperatures effects, Shock wave
boundary layer interaction and also addresses the objectives of the work. Chapter 3
demonstrates the governing equations and numerical formulation of in-house developed
non-equilibrium flow solver. Chapter 4 focuses on parallelization strategy and background
of semi-automatic code generation. Chapter 5 deals with validation of the solver followed
by the speedup comparison for both inviscid and viscous test cases. Finally, the thesis
ends with conclusions and future work in chapter 6.

Chapter 2

Background and Literature review

The relevance of physical effects and its characteristics for high-speed flows was highlighted
in the previous chapter. In view of this, the current section addresses high temperature
effects, shock wave boundary layer interaction (SWBLI), a literature survey on parallel
computation using OP2 framework, and finally, problem statement and objectives.

2.1 High temperature effects

High temperature effects have a significant impact on the flow field modifications and
aerodynamics of high-speed vehicles. High temperatures of over 800K can be observed in
hypersonic flows such as space vehicles. Due to flow deceleration in the shock layer, the
kinetic energy is converted into heat energy (internal energy) resulting in huge temperature
difference post-shock. This causes vibrational excitation in gas molecules which inturn
causes collisions of atoms. This also leads to ionization and dissociation reactions in
which molecules break down into new atoms. It signifies that fluid need time to complete
the reactions and achieve a final chemical composition in the equilibrium state. Over
which, the thermophysical properties like specific heat, viscosity, and thermal conductance
get disrupted. Moreover, the presence of free electrons due to ionized air can result in
a blackout, where spacecraft communications become difficult. These phenomena are
referred as “real gas effects”. The temperature ranges of vibrational excitation, dissociation,
and ionization reactions for air at 1 atm pressure are shown in fig. 2.1. O2 begins to
dissociate at 2500K and it completely gets dissociated at 4000K. Range of dissociation is

4

Chapter 2. Background and Literature review 5

from 2500K to 9000K and the range of ionization begins from 9000K.

Figure 2.1: Ranges of various high temperature aspects of air (1 atm)

It is important to understand high temperature effects. Lobb [28] did the most groundbreak-
ing research on the impact of high temperatures and also conducted several experiments to
find out the shock stand-off distance on spheres driven with hypervelocity. Hornung [22]
demonstrated the dissociation of nitrogen over a blunt body in an experiment. Followed
by this, a number of numerical studies to obtain accurate aerodynamic analysis were
published [42]. Then after various flux computation schemes like Van Leer and Roe were
derived for simulation purpose. Using the Direct Simulation Monte Carlo method (DSMC)
with a chemistry model of five species, a simulation of transitional flow for hypersonic
reentry conditions around the nose of a space shuttle is presented by Moss and Bird
[30]. For low altitude free stream conditions the results are very good with experimental
observations. In addition, at higher altitudes, no changes were seen in the composition of
free stream gas behind the shock wave.

Chapter 2. Background and Literature review 6

Many researchers did a vigorous amount of work to simulate and understand the chemical
equilibrium flow. An algorithm was developed to obtain the chemical equilibrium of air,
based on a equilibrium constant method by Pimentel and Alberto Rocha [35] to achieve
the equilibrium composition for a wide range of temperatures and pressures, they used
both five and seven species model. It was found to be simple to integrate with any solver
with the proposed algorithm.

In previous studies [33, 32, 13] various chemical models were presented. Tchuen and
Zeitoun [43] investigated the impact of chemical kinetic models in multiple areas, along
with a wide range of mach numbers. The main focus of these studies is backward reaction
rates. Later, for analysing surface heat flux on hypersonic vehicles, Wang [48] carried
out similar numerical evaluations and presented the comparison of numerical results to
experimental data by taking three test cases, ELECTRE vehicle, Space Shuttle orbiter
and Apollo command module for mach numbers between 13 and 20.5, and results were
consistent.

In recent times, there has been a growing curiosity in studying the aerodynamics of Mar-
tian atmosphere. Candler [8] presented a chemical kinetics model for CO2 - N2 mixture
which is for the martian atmosphere integrated in a 2-D Computational Fluid Dynamics
(CFD) model and also highlighted that thermal radiation is important because it can
be used for flow cooling. Mitcheltree and Gnoffo [29] gave a computational approach
used to describe the aerothermodynamics of hyper-velocity vehicles in mars atmosphere
by considering maximum heating and maximum deceleration points. They developed
ablative and non-ablative boundary conditions to audit its impact on surface heating.
Later, Sharma and Swantek [39] published numerical and experimental works of ongoing
efforts to study high-enthalpy carbon dioxide flows. The experiments are carried out on a
hyper-velocity expansion tube for aero-shell to do various calculations. Predictions have
been made for heat transfer and shock stand-off distance calculations with conceptual
and numerical estimations for three different ramp angles. Hao et al. [20] numerically
investigated effects of two different models for transport properties on Mars atmospheric
entry vehicles. Both models were observed to have identical translational-rotational and
vibrational heat fluxes. To estimate the chemical diffusion flux, the collision integral
model should be used. Furthermore, the transport models had no impact on the wake
structure. This would provide great insight into high temperature effects and how it plays

Chapter 2. Background and Literature review 7

a prominent role in designing a robust and reliable flight.

2.2 Shock wave boundary layer interaction (SWBLI)

Shock wave boundary layer interaction (SWBLI) has a prominent role in flight performance.
Shock waves are commonly encountered in supersonic and hypersonic flows near wing-body
junction, turbines, nozzle, missiles, helicopter blades, reentry vehicles, etc., which may
impact its efficiency. The majority of flow properties like pressure, temperature, heat flux,
transition to turbulence, etc., are interrupted by shock waves which are very dangerous to
overall safety.

Numerical and experimental investigations have been carried out to study the behaviour of
SWBLI [5] and to take immediate steps to reduce its adverse effects. The most pioneering
work to study SWBLI was carried by Ackeret et al. [1] in the late 1940s. The study’s
aim was to investigate the effects of shock and boundary layer in a wind tunnel. They
observed unusual shock patterns, which they theorized were caused by frictional impacts.
For the first time in the history of laminar flow events, these complex shock geometries
are captured. Subsequently, a series of experiments were performed by Gadd et al. [15]
to investigate the impact of wide range parameters like free stream Reynolds number,
Mach number and shock strength on shock impingement and ramp induced SWBLI. Three
different forms of boundary layers were investigated in this study.

Further, the hypersonic viscous flows for test cases like wing-fuselage and wing-flap junction
have been analysed by F. Grasso, M. Marini [17]. Different effects on the flow field were
studied in those experiments, including leading edge shape, viscous interaction parameter
and deflection angles. Theoretical and computational work is used to develop additional
scaling laws for peak heating, upstream effect and aerodynamic coefficients. The fig. 2.2
shows Typical configuration of a Scramjet intake and the associated flow features. The
flow is from left to right. The free-stream Mach number and the unit Reynolds number are
7.7 and 4.1× 106m−1, respectively. A supersonic combustion Ramjet’s (Scramjet intake)
consists primarily of multiple external compression ramps, followed by an internal part.
The incoming flow is compressed by the oblique shock waves produced by the ramps and
the cowl lip. It is an application of SWBLI which can be simulated by a ramp in a channel

Chapter 2. Background and Literature review 8

test case.

Figure 2.2: Typical configuration of a Scramjet intake and the associated flow features [14].

Since SWBLI was discovered to be dangerous, several studies have been conducted to
reduce it. There are several control mechanisms available in the literature, such as the
use of a blunt leading edge, mass injection or suction, vortex generator energy deposition
pressure feedback channel, and so on. Townsend’s [45] paper was regarded as one of the
first attempts at SWBLI control. It presented effects of leading edge blunt nose for flow
separation characteristics on a compression ramp, with the implementation of bluntness,
a decrease in separation bubble size and plateau pressure was observed. Furthermore, the
SWBLI was found to be significantly affected by changes in upstream local mach numbers
and Reynolds numbers. The experimental investigations by Holden and Micheal [21]
presented for low Reynolds number and high mach number flow over a flat-plate wedge.
These tests were done on sharp and blunt leading-edge structures. As a result, larger
separation for well separated flow with increase in bluntness and in contrast decrease in
separation was observed. This research also included associations that could be used to
estimate the plateau pressure and minimum angle needed to produce separation. The
studies carried out by Gray and Rhudy [18] found experimental data on various Mach
numbers, Reynolds numbers and wall to free stream total temperature ratios. The impact
of bluntness and cooling of walls on supersonic laminar flow separation was examined. For
the intermediate blunt radius, the upstream extent was higher than other categories. In
addition, wall cooling decreases the ramp inducing area of viscous interaction irrespective
of transition location.

Besides that, an experimental investigation of the boundary layer separation associated
with the compression corner was performed by Lewis [26] for cooling effect in the wind

Chapter 2. Background and Literature review 9

tunnel. For both laminar and transitional interactions, the surface pressure distribution
was found to be dependent on Reynolds number. Chapman et al. [9] proposed that the
principle of free interactions is empirically evaluated and also showed that the adiabatic
structure was quite good approximated but it failed to associate the cool case with the
adiabatic wall. Inger and Zee [23] presented the effect of mass transfer by suction and
blowing for transonic shock wave and turbulent boundary layer. It concludes that a greater
fraction of separation reduction was observed in both the techniques. Lately, Pasquariello
et al. [34] studied a passive flow-control technique for shock wave, and uses a control
configuration which consists of local suction and injection through a pressure feedback
duct. Numerical analysis was carried out for free stream mach number 2.3 resulting in a
impinging oblique shock wave generated by an 8.8◦ wedge interacting with a turbulent
boundary layer. The suction angle was changed while the blowing position remained the
same. This results in reduced size of separation zone. By using this technique, turbulence
amplification was significantly reduced at the interaction region.

2.3 Parallel Computation

2.3.1 OP2

OP2 [16] is an Application Programming Interface (API) with associated libraries for
solving Unstructured Mesh based algorithms on multi-core CPUs and clusters of GPUs.
The application uses source-source translation and compilation to generate appropriate
back-end code for the various target platforms e.g. OpenMP [4], MPI [3], CUDA [31],
OpenCL [19], etc., for execution on different back-end hardware. OP2 is the successor
of OPLUS (Oxford Parallel Library for Unstructured Solvers) which was developed by
University of Oxford in 1933 for a research project [7]. OP2 draws on its predecessor’s
features but develops a “active” code-generation approach to concurrent many / multi-core
architectures.

Chapter 2. Background and Literature review 10

2.4 Problem statements and Objectives

Over the years, many industries and academic communities are using only multi-core CPUs
for the numerical analysis and Computation Fluid Dynamics (CFD) simulation. Graphic
Processing Unit (GPUs) have gained popularity in recent years for CFD simulations. In
comparison to sequential code, GPU can reduce the computational run time by an order
of magnitude. Interestingly, there are different architectures available to develop a solver
to run on GPUs, they are growing quickly and it is a difficult job to develop several codes
for different architectures.

Dipankar Das et al. [10] developed a solver for evaluating the energy deposition based
drag reduction technique for Earth and Mars atmosphere. This solver is implemented to
run on CPUs which increases the computational time. The present work is mainly focused
on developing a CO2 reaction based solver for hypersonic flows and to parallelise it using
OP2 API which then runs on GPUs as well as CPUs.

2.4.1 Objectives

The main purpose of the present work is to simulate the high temperature effects for
hyper-velocity vehicles. In order to have wide applicability, the presented solver must be
capable of simulating low and high enthalpy flow rates. Moreover, in future it can be
enhanced by implementing various schemes, higher order accuracy and different physical
characteristics like drag coefficient, energy deposition etc. Therefore, the main objectives
of the present work are listed below:

1. Development of an unstructured finite volume Navier-Stokes reacting gas flow solver
encapsulated with AUSM δ scheme and viscous fluxes using OP2 framework.

2. Validation for the in-house developed solver against published data.

3. Comparison run time between sequential and parallel solver.

Chapter 3

Numerical Methodology

3.1 Governing Equations

The Governing Equations for this solver contain Navier-stokes and Euler equations. These
calculations are based on the principles of gas dynamic equations like conservation of mass,
conservation of momentum and conservation of energy. In addition, to the Navier-Stokes
equations, species continuity equations must be solved. The source term of these added
equations is responsible for the production rate of species that is negligible in the low
non-reactive gas flow. The following are the vector forms of the coupled Navier-Stokes
and species continuity equations for 2-D axisymmetric laminar viscous compressible flows:

∂U

∂t
+

∂E1

∂x
+

∂F1

∂y
+ S + α (SI − Sv) =

∂Ev

∂x
+

∂Fv

∂y
(3.1)

Here,

11

Chapter 3. Numerical Methodology 12

U =




ρ

ρu

ρv

ρE

C1

·
·

CN−1




, EI =




ρu

ρu2 + p

ρuv

(ρE + p)u

uC1

.

.

uCN−1




, FI =




ρv

ρuv

ρv2 + p

(ρE + p)v

vC1

.

.

vCN−1




(3.2)

Ev =




0

τxx

τxy

uτxx + vτxy − qx −
�N

i=1 hiCiūi

−C1ū1

.

.

−CN−1ūN−1




, S =




0

0

0

0

S1

.

.

SN−1




.

Fv =




0

τxy

τyy

uτxy + vτyy − qy −
�N

i=1 hiCiv̄i

−C1v̄1

.

.

−CN−1v̄N−1




, SI =
1
y




ρu

ρuv

ρv2

(ρE + p)v

vC1

.

.

vCN−1




Chapter 3. Numerical Methodology 13

Sv =
1
y




0

τxy − 2
3
y ∂(µv/y)

∂x

τyy − τθθ − 2
3
µv

y
− 2

3
y ∂(µv/y)

∂y

uτxy + vτyy − qy − 2
3
µv2

y
− 2

3
y ∂(µuv/y)

∂x
−�N

i=1 hiCiv̄i

−C1
v̄1
y

.

.

−CN−1
v̄N−1

y




Where U is the conserved variable vector, E1 and F1 are convective flux vectors in x and y
directions and S is source term vector. The inviscid and viscous axisymmetric source terms
are represented as SI and Sv respectively, α is a constant (α = 1 for 2- D axisymmetric,
0 otherwise), Ev and Fv are the viscous flux vectors in x and y directions. Further, the
physical variables are density (ρ), velocity (u) in x direction, velocity (v) in y direc-
tion, pressure (p), temperature (T), internal energy (e =

�N
i=1 ei

Ci

ρMWi
) and total energy

(E = e+ 1
2
ρ (u2 + v2)). The total number of species is N and ei = h0

fi +
� T

TR
CpidT−RuT

is the molar energy of ith species of Ci, MWi, h0
fi and Cpi are the mass concentration,

molecular weight, heat of formation, and specific heat at constant pressure, respectively.
Here, Ru is the universal gas constant and TR is the reference temperature. The shear
stress components are given by,

τxx = µ

�
4

3

∂u

∂x
− 2

3

∂v

∂y

�
(3.3)

τxy = µ
�

∂u
∂y

+ ∂v
∂x

�
, τyy = µ

�
4
3
∂v
∂y

− 2
3
∂u
∂x

�

and τθθ =
�
−2
3

�
∂u
∂y

+ ∂v
∂x

�
+ 4

3
v
y

�

Where, qx and qy are heat dissipation in x and y directions, τxx, τxy are shear stress
components and τθθ is the shear stress component for axi-symmetry.

The mixture pressure is predetermined as summation of partial pressure of individual
species.

p = RuT
N�

i=1

Ci

MWi

(3.4)

Chapter 3. Numerical Methodology 14

The above equation is based on the iterative use of Newton-Raphson method for generating
temperature from internal energy.

ρe =
N�

i=1

Ci

MWi

(h0
fi +

� T

TR

CpidT + h0
fi)− p (3.5)

3.2 Chemical Kinetics

To model the flight conditions of the Martian atmosphere, a separate finite volume related
inviscid non-equilibrium flow solver has been designed specifically for the chemical reaction
of carbon dioxide flow. A chemistry model of eight species (N2, O2, N, O, NO, CO2, CO,
and C) containing ten elementary reactions is implemented in all the cases discussed in
following chapters. In general, a series of NR elementary reversible reactions involving N
species can be described as follows:

N�

j=1

v�ijnj �
N�

j=1

v��ijnj (3.6)

Here, i=1,2 ..., NR, v�ij and v��ij are the stoichiometric coefficients for species j appearing as
a reactant in the ith forward and backward reactions respectively and molar concentration
for j species is nj =

Cj

MWj
. For the rate constant of a reaction i, the Arrhenius rate

expression is being used, which is defined as,

ki = AiT
mie

−Ei
RuT (3.7)

Where, Ai, mi are constants and Ei is activation energy. After that,the difference in molar
concentration of species j is summarized as,

Sj = MWj

NR�

i=1

(v��ij − v�ij)(kfi

N�

l=1

n
v�il
l − kbi

N�

l=1

n
v��il
l) (3.8)

Where, forward and backward rate constants for reaction i are represented as kfi and kbi
respectively. In the table 3.1 gives the details of chemical reactions and corresponding

Chapter 3. Numerical Methodology 15

specific reaction-rate constants.

S.NO Forward reaction Kfi (cm3/ mole sec) Kbi (cm3/ mole sec)

1 O2 + M - > 2O + M 9.1× 1018T 1.0e−5.937× 104

T 9.1× 1015T−0.5

2 N2 + M - > 2N + M 2.5× 1019T−1.0e−1.132× 105

T 1.5× 1018T−1.0

3 NO + M - > N + O +M 4.1× 1018T−1.0e−7.533× 104

T 3.5× 1018T−1.0

4 CO + M- > C + O + M 4.5× 1019T−1.0e−1.289× 105

T 1.0× 1018T−1.0

5 CO2 + M - > CO + O + M 3.7× 1014e−5.25× 104

T 2.4× 1015e−2.184× 103

T

6 N2 + O - > NO + N 7.4× 1011T−0.5e−3.794× 104

T 1.6× 1011T 0.5

7 NO + O - > O2 + N 3.0× 1011T 0.5e−1.946× 104

T 9.5× 109T 1.0

8 CO + O - > C + O2 2.7× 1012T 0.5e−6.945× 104

T 9.4× 1012T 0.25

9 CO2 + O - > CO + O2 1.7× 1013e−2.65× 104

T 2.5× 1012e−2.4×103

10 CO + N - > NO + C 2.9× 1011T 0.5e−5.363× 104

T 2.6× 1010T 0.5

Table 3.1: Chemical reactions and specific reaction-rate constants for chemical non-equilibrium
calculations

3.3 Finite Volume Method

There are three widely used numerical method-based solvers in Computational Fluid
Dynamics (CFD) to solve the governing equations i.e. Navier -Stokes equations. The three
techniques are Finite Volume Method (FVM), Finite Element Method (FEM) and Finite
Difference Method (FDM). Finite volume method (FVM) is a widely used discretization
method for the variety of fluid flow simulations. “Finite volume” refers to the small volume

Chapter 3. Numerical Methodology 16

surrounding each node point on a mesh. In the finite volume method, volume integrals
in partial differential equations are converted into surface integral forms of conservation
laws (energy, momentum, mass) are used in this method. FVM can be most efficiently
used for structured and unstructured grids and it is especially well-suited for complex
geometries. In addition, FVM can perform the simple integration of equations through
non-overlapping control volume parameters. The implementation of FVM has two related
methods, which are classified for control volume frameworks i.e. cell-centered scheme and
cell-vertex scheme.

In this present solver a cell centered scheme was implemented due to its ease of application.
As shown in fig. 3.1 in the cell center approach the flow quantities are stored in the
centroid of grid cells. Hence, the control volumes are identical to grid cells. The solver is
developed for unstructured grids.

Figure 3.1: Representation of cell centered FVM scheme

3.3.1 Mathematical formulation of cell centered FVM

Steps for FVM discretization:

• Writing the required governing equation in its integral form.

• Applying Gauss Divergence Theorem.

• Finally, we will get a discretized form which can be solved using a computer (“Flux
terms”).

Chapter 3. Numerical Methodology 17

Considering 2D-axisymmetric Navier-Stokes equations discussed above, eq. (3.1) can be
written in integral form as,

�

Ω

�
∂U

∂t
+

∂E1

∂x
+

∂F1

∂y
− ∂Ev

∂x
− ∂Fv

∂y
+ S + α (SI − Sv)

�
dΩ = 0 (3.9)

Rearranging the equation as:

�

Ω

∂U

∂t
dΩ = −

�

Ω

�
∂E1

∂x
+

∂F1

∂y
− ∂Ev

∂x
− ∂Fv

∂y
+ S + α (SI − Sv)

�
dΩ (3.10)

Left hand side of eq. (3.10) can be discussed as:

�

Ω

∂U

∂t
dΩ =

∂

∂t

�

Ω

UdΩ =
d

dt

�
ŪΩ

�
= Ω

d

dt
Ū (3.11)

Where, Ū =
�
Ω UdΩ�
Ω dΩ

Considering, right hand side of eq. (3.10),

�

Ω

�
∂E1

∂x
+

∂F1

∂y
− ∂Ev

∂x
− ∂Fv

∂y
+ S + α (SI − Sv)

�
dΩ = 0 (3.12)

The equation can rearrange as,

�

Ω

�
∇ · (HI −Hv) + S + α (SI − Sv)

�
dΩ = 0 (3.13)

Where, HI = [EI FI], Hv = [Ev Fv] and ∇ =
�

∂
∂x

∂
∂y

�

Chapter 3. Numerical Methodology 18

Let, H = (HI −Hv)

Applying Gauss divergence theorem to the first term of eq. (3.12):

�

Ω

∇ ·HdΩ =

�

S

H · n̂dS (3.14)

Where, n̂ is unit control surface normal pointing outward of the control volume, nx and
ny are x and y components of the unit vector n̂.

�

S

H · n̂dS =

nf�

J=1

HJ · n̂JΔSj =

nf�

J=1

H⊥JΔSJ (3.15)

Here, ΔSJ is the face length of a control volume. Where, the summarization of inviscid
(HI) and viscous normal (Hv) fluxes goes across the faces of a control volume is represented
as H⊥. Therefore,

H⊥ = HI⊥ −HV⊥ (3.16)

Whereas,

Chapter 3. Numerical Methodology 19

HI⊥ =




ρu⊥

ρuu⊥ + pnx

ρvu⊥ + pny

(ρe+ p)u⊥

C1u⊥

.

.

CN−1u⊥




, HV⊥ =




0

nxτxx + nyτxy

nxτyx + nyτyy

nxΘx + nyΘy

0

.

.

0




(3.17)

U⊥ is the contravariant velocity can be representing as:

u⊥ = u · nx + v · ny (3.18)

Work done by viscous force and heat transfer by heat conduction in energy equation can
be written as,

Θx = uτxx + vτxy − qx −
N�

i=1

hiCiūi (3.19)

Θy = uτyx + vτyy − qy −
N�

i=1

hiCiv̄i (3.20)

Likewise, source terms in eq. (3.11) can be present as;

�

Ω

�
S + α (SI − Sv)

�
dΩ = ΩS̄c + αΩS̄ (3.21)

Here,

S̄ = S̄I − S̄v (3.22)

Chapter 3. Numerical Methodology 20

Consequently, the integral form of the governing Equation eq. (3.10) can be written from
equations eq. (3.11), eq. (3.15) and eq. (3.21) as,

Ωi
dUi

dt
+

nf�

J=1

H⊥J
ΔSJ + ΩiSci + α ΩiS̄i = 0 (3.23)

dUi

dt
= − 1

Ωi

nf�

J=1

H⊥J
ΔSJ − Sci − α Si = R(Ui) (3.24)

Therefore, this is the semi-discretized governing equation.

3.4 Spatial Discretization

The residual R(Ui) must be evaluated in order to solve the semi-discretized governing
equation described in eq. (3.24). Flux calculation methodologies determine the precision
of the solution. Thus, convective and viscous fluxes at the faces of the control volume are
used in this solver. The current solver incorporates various flux evaluation schemes, which
is described in the subsections below.

3.4.1 Discretization of Convective Fluxes

3.4.1.1 AUSM

The primary aim of developing a numerical analysis algorithm has been to maximize both
accuracy and efficiency. This is particularly important when solving complex problems
involving the Navier-Stokes equations, which might also involve turbulence models and
chemical species equations. The AUSM scheme was first introduced by Liou and Steffen
[27]. Many researchers use the Advection Upstream Splitting Method (AUSM) to discretize
convective fluxes. In the supersonic and hypersonic flow regimes, this scheme can be used
to solve a wide variety of problems. The scheme begins by recognising that the inviscid
flux is made up of two theoretically distinct parts namely, convective and pressure fluxes.
AUSM scheme is applied to the grid at faces where it calculates the flux on that face using

Chapter 3. Numerical Methodology 21

the corresponding left and right cell values and unit normal of that face.

The flux vector is given by:

�Fc = V ·




ρ

ρu

ρv

ρw

ρH



+




0

nxp

nyp

nzp

0




(3.25)

The first term in eq. (3.25) represents scalar quantities, which are convected by the
contravariant velocity. In contrast, the pressure term is governed by the acoustic wave
speed. Where V is the contra variant velocity derived in eq. (3.18) gives the velocity of
normal to the surface element. It is known as the dot product of velocity and unit normals
nx, ny are the unit normal components in their respective directions.

The pressure at the face of the control volume is obtained from splitting

pI+1/ 2 = p+
L + p−

R (3.26)

Where, pI+1/ 2 is the pressure at the face of the control volume with the split pressure
given by;

p+
L =





pL if ML ≥ 1
pL
4
(ML + 1)2 (2−ML) if |ML| < 1

0 otherwise

(3.27)

p−
R =





0 if MR ≥ 1
pR
4
(ML − 1)2 (2 +MR) if |MR| < 1

pR otherwise

(3.28)

Chapter 3. Numerical Methodology 22

It is also possible to use the following lower-order expansion for
��ML/R

�� < 1.

p±L/R =
pL/R
2

�
1±ML/R

�
(3.29)

We can also write AUSM in the form below.

�Fc =
1

2
(MN)I+1/2







ρ

ρu

ρv

ρw

ρH




L

+




ρ

ρu

ρv

ρw

ρH



R



−1

2
|(MN)I+1/2|)







ρ

ρu

ρv

ρw

ρH



L

−




ρ

ρu

ρv

ρw

ρH




R



+




0

nx(p
+
L + p−R)

ny(p
+
L + p−R)

nz(p
+
L + p−R)

0




(3.30)

eq. (3.30) represents the convective flux.

The first term on the right-hand side of the above eq. (3.30) represents a Mach number-
weighted average of left and right cells. The second term has dissipative character. It is
scaled by the scalar value

��(Mn)I+1/2

��.

Mn is the average of mach number used to evaluate the flux vector in eq. (3.30). The
Mach number at the face is given as

(Mn)I+1/2 = M+
L +M−

R (3.31)

MLandMR are the left and right cells mach numbers obtained from the split mach numbers
by evaluating from the Vanleers flux vector splitting schemes [46].

Chapter 3. Numerical Methodology 23

M−
R =





0 if MR ≥ 1
−1
4
(MR − 1)2 if |MR| < 1

MR otherwise

(3.32)

M+
L =





ML if ML ≥ 1
1
4
(ML + 1)2 if |MR| < 1

0 otherwise

(3.33)

M+
L ,M

−
R are the left and right cell Mach numbers respectively.

3.4.1.2 AUSM delta

AUSM proved to deliver a crisp resolution of strong shocks and accurate results for
boundary layers. However, the original AUSM [27] was found to generate local pressure
oscillations at shocks and in cases where the flow is aligned with the grid it was therefore
suggested to switch at shocks to Van Leers scheme [37]. When the Mach number at
face (Mn)I+1/2 tends to zero the dissipation term will approach zero as well. Thus, any
disturbances cannot be damped by the scheme. In order to solve the flow alignment
problem, it was proposed to modify the scaling of the dissipation term as follows

��(Mn)I+1/2

�� =





��(Mn)I+1/2

�� if
��(Mn)I+1/2

�� > δ

(Mn)2I+1/2
+δ2

2 δ
if

��(Mn)I+1/2

�� ≤ δ

(3.34)

where, δ is a small value (0 < δ ≤ 0.5). In order to retain the accuracy of AUSM for
boundary layers, the parameter δ could be reduced in the wall normal direction. The
pressure term evaluation will remain the same as the AUSM scheme. It is proved to
provide crisp shock better than AUSM scheme. [6].

In the present work, AUSM δ numerical schemes have been implemented in the code.

Chapter 3. Numerical Methodology 24

3.4.2 Discretization of Viscous Fluxes

The flow variables and their derivative must be known at the same place in order to
calculate viscous fluxes on the face of a control volume. Consistency and simplicity in
spatial discretization was ensured in the current numerical analysis by using the same
control volume for viscous flux evaluation as for convective flux evaluation. The flow
variables at the faces are calculated by averaging the node values. Using the discrete
Gauss divergence theorem, the first derivative of the flow vector is determined at the cell
centre [6]. Finally, these values are then distributed to the cell nodes and then calculated
on the face with the average of node values. This technique avoids the decoupling of
evaluated gradients at the boundaries as it usually happens in the simple cell averaging
method at a face. Thus, values of the velocity components (u, v, w), the dynamic viscosity
µ , and of the heat conduction coefficient k , which are required for the computation of
the viscous terms and of the stresses. The process of finding the node values and cell
gradient evaluation are explained in detail.

3.4.2.1 Calculation of Viscous flux

In order to calculate the viscous fluxes we entail node values, cell gradients and node
gradients. To determine the node values we have to find the cell values from neighbouring
cells and their cell areas. The fig. 3.2 shows a node surrounded by 4 cells, the node value
is calculated by:

Figure 3.2: Node value schematic diagram

Chapter 3. Numerical Methodology 25

Nv =

�4
i=1 Ci × Ai�

Ai

(3.35)

where, Nv = Node value; Ci = Cell value; Ai = Cell area.

After calculating the node values we need to compute the cell gradients at the face using
node values, unit normal and the face area. The fig. 3.3 shows the calculation of cell
gradients for a single cell, the cell gradients are calculated by:

Figure 3.3: Cell gradient schematic diagram

∅1 =
Nv1 +Nv2

2
(3.36)

Fi = ∅1 × �n1 × ds1

� =
�4

i=1 ∅i× �ni×dsi
A cell

where, � = Cell gradient at cell center; A cell = Cell area; dsi = ith Face area and ∅i =
ith face value.

Chapter 3. Numerical Methodology 26

Node gradients are calculated using the same relation as in eq. (3.35) and the average of
node gradients is taken as the face gradient and the face values (average of node values).
For viscous fluxes we need the gradients and the values (velocity, temperature, etc.) at
face center.

3.5 Boundary Conditions

Any numerical simulation should only consider a portion of the physical domain or struc-
ture in question. The domain is truncated, resulting in artificial limits where we must
prescribe values for such physical quantities. Furthermore, walls that are open to the
flow reflect the physical domain’s natural borders. The numerical treatment of boundary
conditions requires extreme caution. A bad implementation can lead to erroneous simula-
tions of the actual system. Furthermore, the scheme’s stability and convergence speed
can be affected adversely. Various boundary conditions considered in this work which are
described in subsequent sections.

3.5.1 Inflow and Outflow boundary conditions

The number of variables that must be applied at the inflow or outflow boundary for a
well-posed problem is determined by the characteristic principle [36] which depends on
whether the flow is locally subsonic or supersonic. The focus of this study is on supersonic
inflow and outflow conditions.

1. Supersonic Inflow

For Supersonic inflow, all eigenvalues have the same sign. As a result, all flow vari-
ables at the supersonic inflow boundary are set to freestream values corresponding
to typical hypersonic flight conditions or ground test conditions. Therefore, the
values are specified based on Mach number (M∞) and flow angles(angle of attack etc.)

Chapter 3. Numerical Methodology 27

2. Supersonic Outflow

At the outflow boundary, where the flow field leaves the computational domain, the
majority of the flow field is considered to be supersonic. In this case, all of the
eigenvalues have the same symbol. As a result, the flow variables at the supersonic
outflow boundary are extrapolated from the interior cell, taking into account the
zero upstream effect of supersonic flow. A zeroth order extrapolation is used in this
case.

3.5.2 Inviscid Wall boundary condition

Viscous forces adjacent to the wall are ignored and fluid thus slides freely across the surface
under this condition. It is not zero, whereas the normal velocity portion is assumed to be
nil and thus the wall behaves as impermeable. On the other side, no stream of symmetry
crosses the wall boundary. Thus, all boundary conditions are mathematically identical,
although their spatial significance is distinct. For these boundary conditions, the current
solution uses a cell-mirror technique.

3.5.2.1 Mirror or Ghost cell approach

This solution offers the freedom to apply a flux calculation system on the wall as the
waves develop. Thermodynamic and tangential velocities are obtained from the inner flow
in this method. However, normal velocity is treated differently. The species density is
equated to the interior cell density. Here, the graphical representation of the approach is
shown in fig. 3.4 and the mathematical formulation is as follows, here the subscript i is
interior cell and g is ghost cell:

u⊥g = −u⊥i

u�g = u�i

pg = pi

Chapter 3. Numerical Methodology 28

ρg = ρi

Figure 3.4: Mirror or Ghost cell approach [11]

3.5.2.2 Viscous Wall

Through the Ghost cell approach, viscous wall condition has been implemented for wall
faces. This method shows that the tangential and regular velocity at the wall are both zero.
From the immediate interior cell, the pressure values at the wall faces are extrapolated.
Isothermal and adiabatic cases have different temperature boundary conditions for the
wall. In the present solver we considered adiabatic wall. For adiabatic condition, the
gradients of temperature are set as zero.

Hence by referring to fig. 3.4, for an adiabatic wall, the mirror cell approach gives,

u⊥g = −u⊥i

u�g = −u�i

pg = pi

ρg = ρi

Eg = Ei

Chapter 3. Numerical Methodology 29

3.6 Temporal discretization

The ordinary differential equations obtained by the spatial discretization are converted to
a system of algebraic equations by the temporal discretization. There are two styles of
time-marching methods: explicit and implied time-marching. Explicit methods are simple
to use and have a low computational cost per time stage. The Courant-Friedrichs-Lewy
(CFL) condition, however, limits the magnitude of the time step for an explicit method to
ensure numerical stability. This instability problem can cause longer computation times,
particularly when simulating viscous flows. With unconditionally stable implicit schemes,
even larger time steps can be used for steady flow problems where higher time precision is
not desired. While implicit formulations have a higher computational cost per time step,
they can reduce the overall computational time by an order of magnitude as compared to
explicit formulations by using a larger time step. We used explicit in the development of
the solver and the scheme used is an explicit Euler scheme.

dUi

dt
= − 1

Ωi

�

J�i

H⊥J
�SJ − αSi = R(Ui) (3.37)

3.6.1 Euler time stepping

The simple explicit Euler scheme for time integration of eq. (3.37), leads to the fully
discrete finite volume formulation for a ith control volume as,

�tUi

�t
= R(Un

i) (3.38)

�tUi = Un+1
i − Un

Un+1
i = Un +�tR(Un

i)

Un+1
i = Un − �t

Ωi

�
J�i H⊥J

�Sj − α�tSi

So, with the known values of variables at the nth state, (n+ 1)th state can be measured
directly, and then time marching can be performed. However, since this scheme is only
first order accurate in time, it is less suitable for time-dependent simulations that are
unsteady.

Chapter 4

Semi Automatic Code Generation

When the number of processors grows, the volume of data transferred between main
memory and processors increases as well, resulting in overheads and preventing an appli-
cation from reaching the optimal level of parallelism, and also the traditional approach for
GPU-driven parallelization is laborious, requiring intensive effort for hand-written code
and optimize GPU code manually. It is difficult to programme on GPUs, as the compil-
ers will not provide sufficient abstractions to compel programmes to understand many
low hardware specifics. The OP2 framework optimization techniques solve this problem
and help to increase parallelization efficiency by using a high level API and code translator.

In this chapter, we briefly describe about the OP2 framework, advantages of using it
in parallelizing applications and difficulties faced in the code generation for OP2 by
explaining some examples of kernel files and parallel loops. Later, the semi automatic
code generation technique is described, this semi automatic code generation helps in gener-
ating the parallel loops automatically and corresponding kernel files from high level scripts.

4.1 OP2

For the MPI/PVm-based distributed memory performance of unstructured mesh algo-
rithms in FORTRAN, the original O Plus library was created over 20 years ago [7]. Its
second version, OP2, is built to exploit common multi-core and many-core hardware (GPU,
AVX, etc.) in addition to distributed parallelization of the memory and allows to run one

30

Chapter 4. Semi Automatic Code Generation 31

multi-core/many-core node or a multi-core/many-core node cluster. OP2 currently only
supports the development of code in C/C ++ and Fortran.

The OP2 methodology for creating executables for various back-end hardware consists of
first pre-processing code written with the OP2 API to create architecture-specific code,
and then integrating the created code with the required parallel interface (e.g. OpenMP,
CUDA, MPI, etc.). For example, when generating back-end code for NVIDIA GPUs the
main programme is parsed through the code generation tools, creating an updated main
programme and a CUDA file. Each of the kernel functions has its own file in the CUDA
file. Then the oplib.cu library is compiled and attached to it using a C-compiler (e.g. gcc)
and the NVIDIA CUDA compiler (nvcc), controlled by a Makefile.

Over a broad variety of computer science and engineering applications, unstructured grids
meshes have been and remain used. Unstructured mesh is being used to develop this
solver. In computational fluid dynamics (CFD), computational electromagnetic (CEM),
structural mechanics and general finite-element techniques, they were introduced to solve
the partial differential equations. In general, the millions of elements in three dimensions
are always necessary for the optimal solution, which results in large computational costs.

In contrast to structured meshes, unstructured meshes define the mesh topology using
connectivity relevant information. The OP2 method for solving unstructured mesh
problems includes, splitting the algorithm down into four sections: sets, data on sets,
connectivity (or mappings) between the sets and operation over sets. [16]. A set includes
nodes, edges, triangular or quadrilateral faces and various elements, depending on the
specific application. Mappings between sets that describe how elements from one set
connect with elements from another. This results in an API that can be used to describe
any mesh or graph fully and abstractly.

Chapter 4. Semi Automatic Code Generation 32

Figure 4.1: The mesh represented data layouts provided with OP2

fig. 4.1 shows an example of mesh that includes nodes and face data. The mesh can
defined using OP2 API as follows:

1 op_set nodes = op_decl_set (nnodes , "nodes ") ;
2 op_set f a c e s = op_decl_set (n faces , " f a c e s ") ;
3 op_set c e l l s = op_decl_set (n c e l l s , " c e l l s ") ;
4 op_set b f a c e s = op_decl_set (nbfaces , "boundary_faces ") ;

where, nodes, faces, cells and boundary faces data is incorporated from mesh data. The
connectivity is declared through the mappings between cells, nodes, faces and boundary
faces.

1 op_map cell_node_map = op_decl_map(c e l l s , nodes , 4 , cel l_node , " p c e l l ") ;

The op map deceleration defines this mapping, where the op cell node map has a dimension
of 4. Each element of set cells is mapped with 4 different elements in set nodes. Similarly,
each element of set cells mapped with 2 different elements in set faces and in set bfaces.
Identically, each element of set faces and set bfaces is mapped with 2 different elements in
set nodes.

Chapter 4. Semi Automatic Code Generation 33

1 op_map face_node_map = op_decl_map(face s , nodes , 2 , face_node , "pedge") ;
2 op_map face_cell_map = op_decl_map(face s , c e l l s , 2 , f a c e_ce l l , " p f a c e c e l l ") ;
3 op_map boundary_node_map = op_decl_map(bfaces , nodes , 2 , boundface_node , "

bound_node") ;
4 op_map boundary_cell_map = op_decl_map(bfaces , c e l l s , 1 , boundface_cel l , "

bound_cell ") ;

In the unstructured mesh code, all numerically intensive calculations can be represented
as sets of operations. This refers to loops over a series of data, accessing data through
the mappings (i.e. one level of indirection), doing certain calculations, and then writing
back to the data arrays (possibly through the mappings). If the loop contains a mapping
indirection, we call it an indirect loop; otherwise the loop is called a direct loop. In these
loops, the OP2 API includes a parallel loop declaration syntax that allows to declare the
computation over sets [16].

Consider the sequential loop below, which runs through each cell in the mesh. This loop is
used to calculate cell quantities which are further used in the simulation. Each of the cells
uses data values stored on the four nodes associated with that cell to update the data value.

1 i n l i n e void eva lua t e_ce l l_quant i t i e s (const double ∗point1 , const double ∗
point2 , const double ∗point3 , const double ∗point4 , double ∗ ce l l_area ,
double ∗ c e l l_c en t r o i d)

2 {
3 double x0 , x2 , x3 , x1 , y0 , y2 , y3 , y1 ;
4

5 x0 = point1 [0] ; x1 = point2 [0] ;
6 y0 = point1 [1] ; y1 = point2 [1] ;
7

8 x2 = point3 [0] ; x3 = point4 [0] ;
9 y2 = point3 [1] ; y3 = point4 [1] ;

10

11 double dx1 = x2−x0 ; double dy1 = y2−y0 ;
12 double dx2 = x3−x1 ; double dy2 = y3−y1 ;
13

14 c e l l_area [0]=(dx1∗dy2−dx2∗dy1) / 2 . 0 ; // c e l l area
15 c e l l_c en t r o i d [0]=(x1+x2+x3+x0) / 4 . 0 ; // c e l l c en t r o id x
16 c e l l_c en t r o i d [1]=(y1+y2+y3+y0) / 4 . 0 ; // c e l l c en t r o id y
17 }

Chapter 4. Semi Automatic Code Generation 34

This loop is declared by an application developer using the OP2 API along with the
“elemental” kernel feature.

1 op_par_loop (eva lua te_ce l l_quant i t i e s , " c e l l_quan t i t i e s " , c e l l s ,
2 op_arg_dat (nodes , 0 , cell_node_map , 2 , " double " , OP_READ) ,
3 op_arg_dat (nodes , 1 , cell_node_map , 2 , " double " , OP_READ) ,
4 op_arg_dat (nodes , 2 , cell_node_map , 2 , " double " , OP_READ) ,
5 op_arg_dat (nodes , 3 , cell_node_map , 2 , " double " , OP_READ) ,
6 op_arg_dat (ce l l_area , −1, OP_ID, 1 , " double " , OP_WRITE) ,
7 op_arg_dat (c e l l_cent ro id , −1, OP_ID, 2 , " double " , OP_WRITE)) ;

OP2 manages the generation and parallelization of specific architectures. In this case,
six arguments are used for the elemental kernel function, and a parallel loop declaration
requires that the access method (OP WRITE, OP READ, etc.) be specified. OP ID shows
that without indirection the cell to cell data should be accessed (i.e. directly). On the other
hand, nodes are accessed using the indicated index (0, 1, 2, and 3) via the mapping of the
cell node map. The dimension of the data (1, 2 in this example respectively) is also declared.

4.2 Semi Automatic Code Generation Using SymPy

As mentioned above, writing parallel loop and kernel files is error prone because of the
complex parallel loop declarations required such as mappings, sets, operation over sets
etc, and writing the kernel file is also time consuming. The other disadvantage of writing
the OP2 code manually is it becomes static. If a new library arrives we have to port the
entire code into that library API.

To overcome this, we are following a semi-automatic code generation approach. Such
approaches are previously done in Finite Difference Method (FDM) [24] which is fully
automatic code generation and is very beneficial. In the present work, the solver is
developed using the symbolic Python package SymPy. SymPy is a python library for
symbolic mathematics. It aims to become a full-featured Computer Algebra System (CAS)
with a language that is as easy to understand and quickly expanded. SymPy is primarily
written in Python [44].

Chapter 4. Semi Automatic Code Generation 35

Figure 4.2: Flow chart of Code Generation

The fig. 4.2 shows the implementation of mathematical models symbolically. Grid is a
mesh file for which mapping is done in multiple ways like cell-to-cell, node-to-node etc. By
using data sets and coefficients from physics the required loops are written in Python script
using SymPy. Some of the examples for loops are cell loops, face loops, node loops. For a
cell loop we use cell-to-cell mapping. Similarly, for a node loop node-to-node mapping is
used. Using the code generator we generate an op par loop and kernel file for the loops
written in python script. The generated kernel file and op par loop are then copied into
the solver code manually, thus it is referred as “Semi-Automatic” code generation. The
generated solver code is then translated through an Application Programming Interface,
OP2. The OP2 translator generates architecture-specific code, and then integrates the
created code with the required parallel interface (e.g. OpenMP, CUDA, MPI, etc.). These
kernel files are then compiled and executed respectively as shown in fig. 4.3.

Chapter 4. Semi Automatic Code Generation 36

Figure 4.3: Flow chart of OP2 Framework

Chapter 5

Validation of in-house solver

The verification and validation process is an essential part of the CFD solver development
process. In order to validate the developed solver, a canonical ramp in a channel test
case is considered. The results obtained from the first order inviscid solver are validated
qualitatively and quantitatively, as well as validated against experimental and analyt-
ical data, in this chapter. After validating the in-house solver the computational run
times for 1000 iterations using different architectures are compared with the published data.

5.1 Ramp in a channel

5.1.1 Boundary Conditions

The geometry of supersonic aircraft engine inlets, which are wedge-shaped to compress
air flow into the combustion chamber, is an example of this test case as shown in fig. 2.2.
For the flow inside a ramp in a channel, an oblique shock wave is developed. It is a
straightforward case in which the shock can be generated. When supersonic flow is
turned on itself, it produces an oblique shock wave with a sharp edge. Across the shock,
temperature, pressure, density, and air stream velocity are all minimized. The fig. 5.1
shows the boundary conditions that are used for inviscid and viscous test cases. The
mesh with number of grid cells and nodes considered for inviscid and viscous are shown in
table 5.1.

37

Chapter 5. Validation of in-house solver 38

Figure 5.1: Boundary conditions for (a) Inviscid test case (Ramp angle, θ = 20◦) and
(b) Viscous test case (Ramp angle, θ = 12.5◦)

Inviscid Viscous

Ramp Angle 10◦ 15◦ 12.5◦

No. of Cells 41600 55900 28800

No. of Nodes 42051 56461 29161

Table 5.1: Number of cells and nodes for different test cases

5.1.2 Inviscid test case

Simulations are carried out to analyse the effect of ramp angle. Therefore, different ramp
angles of 10◦, 20◦ are considered here. Along with the no-slip boundary conditions, free
stream conditions are static pressure 199.45Pa and static temperature 131.70K. Here, the
simulation is carried out with three different inlet conditions that is with Mach numbers
4, 5 and 7. Then fig. 5.2 shows the pressure contours for different ramp angles by varying
the incoming flow values. It is well known that high ramp angles produces a greater level
of pressure difference on the incoming flow. Pressure plots over a line along x-axis for
different mach numbers are shown in fig. 5.3.

Chapter 5. Validation of in-house solver 39

Figure 5.2: Pressure contours for Inviscid test case

(a) (b)

Figure 5.3: Pressure plots over a line along x-axis for different mach numbers

Chapter 5. Validation of in-house solver 40

5.1.3 Viscous test case

Simulation is carried out for canonical ramp in a channel. In this test case, a ramp angle
θ = 12.5◦ has been considered with input mach number of 5.0. The computational domain
used for the present solver marked with boundary conditions is shown in fig. 5.1. This
domain has been meshed with 28800 unstructured cells as given in table 5.1. Free stream
conditions used in this study are static pressure 199.45Pa and static temperature 131.70K.
A real gas model is implemented for this simulation. AUSM delta flux scheme with first
order accuracy is used in this simulation. The pressure contours are shown in below fig. 5.4.

Figure 5.4: Pressure contours for viscous test case

5.1.4 Validation of in-house solver

The parameters considered for validation are shock wave angle (β), pressure ratio and
temperature ratio. The values obtained from the in-house solver are compared with
analytical predictions [41] and reference publication [10]. These comparisons are given
in table 5.2. From the table, it is evident that the results of the in-house solver are in
good agreement with the analytical predictions and reference data. Therefore, it can be
concluded that the in-house solver is validated successfully for low enthalpy conditions.

Chapter 5. Validation of in-house solver 41

Ramp

angle

θ

M
Shock wave angle

(β)

Pressure ratio

(P2/P1)

Temperature ratio

(T2/T1)

Analytical Reference
In-house

solver

Analytical Reference
In-house

solver

Analytical Reference
In-house

solver

10 4 21.76 22.24 21.86 2.35 2.40 2.45 1.22 1.28 1.30

5 18.90 18.85 18.79 2.82 2.95 2.98 1.29 1.38 1.39

7 15.88 15.77 15.79 4.00 4.04 4.25 1.45 1.55 1.59

20 4 31.21 31.93 31.50 4.70 4.92 5.04 1.54 1.67 1.71

5 28.55 29.13 28.79 6.29 6.41 6.77 1.74 1.76 1.95

7 26.01 26.31 26.18 10.46 11.24 11.25 2.26 2.53 2.53

Table 5.2: Shock wave angle, pressure ratio and temperature ratio at different deflection
angles and Mach numbers

5.2 Run time Comparison

The solver has achieved estimated results relative to the theoretical results and hence the
speed comparison is carried out in different architectures. The machine that is considered
here is DGX machine with NVIDIA V100 GPU, 80 CPUs and half terabyte RAM. The
following solvers considered are (1) sequential, where OP2 does not do any optimization, (2)
Gen-sequential which is an optimized version of sequential code and (3) OpenMP, version
of the code generated using OP2 translator. We use the GNU compiler, g++ version 9.3.0,
with -O3 optimization for the CPUs. In our case we use 34 cores in the DGX machine
to run OpenMP. We compared computational run time and speedup of in-house solver
(w.r.t Sequential) for different architectures for inviscid test cases which is given in table 5.3.

Chapter 5. Validation of in-house solver 42

Sequential Gen-Sequential OpenMP

Inviscid 99.494 sec 93.80 sec 7.319 sec

Speed-up 1 1.06 13.59

Table 5.3: Inviscid speedup comparison between different architectures (1000 iterations)

In table 5.4 the computational run times and speedup of in-house solver (w.r.t Sequential)
are compared between reference solver [10] and various architectures for viscous test case.

Reference solver Sequential Gen-Sequential OpenMP

Viscous 1680 sec 87.556 sec 81.009 sec 8.788 sec

Speedup 0.052 1 1.08 9.963

Table 5.4: Viscous speedup comparison between different architectures and reference solver
(1000 iterations)

Chapter 6

Conclusions and Future work

6.1 Conclusions

The principal objective of this thesis is to accelerate a hypersonic reaction based CO2 solver
for martian atmosphere. Hence, a finite volume method based solver having the potential
to simulate hypersonic flows in Mars’s atmosphere for 2-Dimensional unstructured test
cases which accommodates eight species and their chemical kinetics is developed. The de-
veloped solver uses OP2 framework to accelerate on various computing architectures. The
necessary kernel files and parallel loops for OP2 API are generated using semi-automatic
code generation technique. For validating the solver, ramp in a channel test case for two
different angles (10◦, 20◦) are chosen. The results from the Inviscid first order accuracy run
are then compared with analytical and reference data from [10]. The solver has achieved
a speedup of 13x and 10x when compared to sequential run using OpenMP for Inviscid
and Viscous solver respectively. The sequential run is 19x faster than the reference solver
which also runs sequentially using a single core. The reason being, we have reduced the if
conditions by the novel implementation of calculating Cp, Cv, energy etc,. Also we have
increased computations and reduced memory footprint by re-calculating energy, Cp, Cv

etc, as and when needed.

43

Chapter 6. Conclusions and Future work 44

6.2 Future work

Although the present solver is capable of delivering faster and accurate results yet there are
a few voids that are to be explored. The following are some of the exploration directions
that assist in improving the solver’s ability:

1. The present solver is limited to 2-D planar flowfield which can be enhanced by
implementing 2-D axisymmetry flowfield.

2. The solver’s potential can be further improved by adapting it to the 3-D domain.
This would make studying different 3-D components in hypersonic flows extremely
easier.

3. The order of accuracy implemented in the present solver is first order which can be
improved by executing second order of accuracy using limiters [47].

4. Present solver’s simple explicit Euler scheme can be upgraded to explicit Runge-
Kutta scheme to achieve higher order temporal accuracy [25].

The following are some of the exploration directions that assist in improving the semi-
automatic code generator:

1. Semi-automatic code generation can be improved further to fully automate the OP2
code generation which can generate the code for high level scripts [24].

2. The solver can be parallalized and run on GPUs using the required computational
architecture.

Bibliography

[1] Jakob Ackeret, F Feldmann, and N Rott. “Investigations of compression shocks and
boundary layers in gases moving at high speed”. In: (1947).

[2] Blaise Barney. Introduction to Parallel Computing Tutorial. https://hpc.llnl.
gov/training/tutorials/introduction-parallel-computing-tutorial.

[3] Blaise Barney. Message Passing Interface (MPI). https://hpc-tutorials.llnl.
gov/mpi/.

[4] Blaise Barney. OpenMP Tutorial. https://hpc.llnl.gov/openmp-tutorial.

[5] Michael H Bertram and Thomas A Blackstock. Some simple solutions to the problem
of predicting boundary-layer self-induced pressures. National Aeronautics and Space
Administration, 1961.

[6] Jiri Blazek. Computational fluid dynamics: principles and applications. Butterworth-
Heinemann, 2015.

[7] David A Burgess, Paul I Crumpton, and Mike B Giles. “A parallel framework for
unstructured grid solvers”. In: Programming environments for massively parallel
distributed systems. Springer, 1994, pp. 97–106.

[8] GRAHAM CANDLER. “Computation of thermo-chemical nonequilibrium Martian
atmospheric entry flows”. In: 5th Joint Thermophysics and Heat Transfer Conference.
1990, p. 1695.

[9] Dean R Chapman, Donald M Kuehn, and Howard K Larson. “Investigation of
separated flows in supersonic and subsonic streams with emphasis on the effect of
transition”. In: (1958).

[10] Dipankar Das et al. “Performance assessment of energy deposition based drag
reduction technique for Earth and Mars flight conditions”. In: Acta Astronautica
159 (2019), pp. 418–428.

45

Bibliography 46

[11] Siddesh Desai. “Numerical study of flow alteration techniques and high temperature
effects at supersonic/hypersonic speeds”. PhD thesis. 2019.

[12] Manuel J. Diaz. Re-entry flow regions of the Apollo Command Module. https:

//space.stackexchange.com/questions/32857/what-was-the-nature-of-

the-visible-part-of-the-viscous-wake-trailing-the-apollo. 2018.

[13] Michael G Dunn and Sang-Wook Kang. Theoretical and experimental studies of reen-
try plasmas. Vol. 2232. National Aeronautics and Space Administration Washington,
DC, 1973.

[14] Sarah Frauholz et al. “Numerical simulation of hypersonic air intake flow in scramjet
propulsion using a mesh-adaptive approach”. In: 18th AIAA/3AF International
Space Planes and Hypersonic Systems and Technologies Conference. 2012, p. 5976.

[15] GE Gadd, Douglas William Holder, and JD Regan. “An experimental investigation
of the interaction between shock waves and boundary layers”. In: Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences 226.1165
(1954), pp. 227–253.

[16] Mike B Giles et al. “Designing OP2 for GPU architectures”. In: Journal of Parallel
and Distributed Computing 73.11 (2013), pp. 1451–1460.

[17] F Grasso and M Marini. “Analysis of hypersonic shock-wave laminar boundary-layer
interaction phenomena”. In: Computers & fluids 25.6 (1996), pp. 561–581.

[18] J Don Gray and RW Rhudy. “Effects of Blunting and Cooling on Separation of
Laminar Supersoniic Flow”. In: AIAA Journal 11.9 (1973), pp. 1296–1301.

[19] OpenCL Working Group. The OpenCL C 2.0 Specification. https://www.khronos.
org/registry/OpenCL/specs/2.2/pdf/OpenCL_C.pdf.

[20] Jiaao Hao et al. “Comparison of transport properties models for numerical simulations
of Mars entry vehicles”. In: Acta Astronautica 130 (2017), pp. 24–33.

[21] Michael S Holden. “Boundary-layer displacement and leading-edge bluntness effects
on attached and separated laminar boundary layers in a compression corner. II-
experimental study”. In: AIAA journal 9.1 (1971), pp. 84–93.

[22] HG Hornung. “Non-equilibrium dissociating nitrogen flow over spheres and circular
cylinders”. In: Journal of Fluid Mechanics 53.1 (1972), pp. 149–176.

[23] GR Inger and S Zee. “Transonic shockwave/turbulent-boundary-layer interaction
with suction or blowing”. In: Journal of Aircraft 15.11 (1978), pp. 750–754.

Bibliography 47

[24] Christian T Jacobs, Satya P Jammy, and Neil D Sandham. “OpenSBLI: A framework
for the automated derivation and parallel execution of finite difference solvers on a
range of computer architectures”. In: Journal of Computational Science 18 (2017),
pp. 12–23.

[25] Bibin John. “Numerical Investigations of Shock Wave Boundary Layer Interaction
in Hypersonic Flows”. PhD thesis. 2014.

[26] John E Lewis, Toshi Kubota, and Lester Lees. “Experimental investigation of
supersonic laminar, two-dimensional boundary-layer separation in a compression
corner with and without cooling.” In: AIAA journal 6.1 (1968), pp. 7–14.

[27] Meng-Sing Liou and Christopher J Steffen Jr. “A new flux splitting scheme”. In:
Journal of Computational physics 107.1 (1993), pp. 23–39.

[28] R KENNETH LOBB. “Experimental measurement of shock detachment distance on
spheres fired in air at hypervelocities”. In: AGARDograph. Vol. 68. Elsevier, 1964,
pp. 519–527.

[29] Robert Mitcheltree and Peter Gnoffo. “Wake flow about a MESUR Mars entry
vehicle”. In: 6th Joint Thermophysics and Heat Transfer Conference. 1994, p. 1958.

[30] James N Moss and Graeme A Bird. “Direct simulation of transitional flow for
hypersonic reentry conditions”. In: Journal of spacecraft and rockets 40.5 (2003),
pp. 830–843.

[31] NVIDIA. CUDA C++ Programming Guide. https://docs.nvidia.com/pdf/
CUDA_C_Programming_Guide.pdf.

[32] Chul Park. “Assessment of a two-temperature kinetic model for dissociating and
weakly ionizing nitrogen”. In: Journal of Thermophysics and Heat Transfer 2.1
(1988), pp. 8–16.

[33] Chul Park. “Review of chemical-kinetic problems of future NASA missions. I-Earth
entries”. In: Journal of Thermophysics and Heat transfer 7.3 (1993), pp. 385–398.

[34] Vito Pasquariello et al. “Large-eddy simulation of passive shock-wave/boundary-layer
interaction control”. In: International Journal of Heat and Fluid Flow 49 (2014),
pp. 116–127.

[35] Carlos Alberto Rocha Pimentel and Annibal Hetem Jr. “Computation of air chemical
equilibrium composition until 30000K-Part I”. In: Journal of Aerospace Technology
and Management 3.2 (2011), pp. 111–126.

Bibliography 48

[36] T J& Poinsot and SK Lelef. “Boundary conditions for direct simulations of
compressible viscous flows”. In: Journal of computational physics 101.1 (1992),
pp. 104–129.

[37] R Radespiel and N Kroll. “Accurate flux vector splitting for shocks and shear layers”.
In: Journal of Computational Physics 121.1 (1995), pp. 66–78.

[38] Aniello Riccio et al. “Optimum design of ablative thermal protection systems for
atmospheric entry vehicles”. In: Applied Thermal Engineering 119 (2017), pp. 541–
552.

[39] M Sharma et al. “Experimental and numerical investigation of hypervelocity carbon
dioxide flow over blunt bodies”. In: Journal of thermophysics and heat transfer 24.4
(2010), pp. 673–683.

[40] Lonnie Shekhtman. With Mars Methane Mystery Unsolved, Curiosity Serves Scien-
tists a New One: Oxygen. https://www.nasa.gov/feature/goddard/2019/with-
mars-methane-mystery-unsolved-curiosity-serves-scientists-a-new-one-

oxygen. 2019.

[41] L C Squire. “Modern Compressible Flow: with historical perspective—Second edition.
JD Anderson. McGraw-Hill Book Co (UK), McGraw Hill House, Shoppenhangers
Road, Maidenhead, Berks, SL6 2QL. 1990. 650 pp. Illustrated.£ 18.95.” In: The
Aeronautical Journal 95.947 (1991), pp. 248–248.

[42] Prabhakar Subrahmanyam. “Development of an interactive hypersonic flow solver
framework for aerothermodynamic analysis”. In: Engineering Applications of Com-
putational Fluid Mechanics 2.4 (2008), pp. 436–455.

[43] Ghislain Tchuen and David E Zeitoun. “Effects of chemistry in nonequilibrium
hypersonic flow around blunt bodies”. In: Journal of thermophysics and heat transfer
23.3 (2009), pp. 433–442.

[44] SymPy Development Team. SymPy. https://www.sympy.org/en/index.html.
2021.

[45] James Courtland Townsend. Effects of leading-edge bluntness and ramp deflection
angle on laminar boundary-layer separation in hypersonic flow. National Aeronautics
and Space Administration, 1966.

[46] Bram Van Leer. “Flux-vector splitting for the Euler equation”. In: Upwind and
high-resolution schemes. Springer, 1997, pp. 80–89.

Bibliography 49

[47] Venkat Venkatakrishnan. “Convergence to steady state solutions of the Euler equa-
tions on unstructured grids with limiters”. In: Journal of computational physics 118.1
(1995), pp. 120–130.

[48] XY Wang et al. “Assessment of chemical kinetic models on hypersonic flow heat
transfer”. In: International Journal of Heat and Mass Transfer 111 (2017), pp. 356–
366.

